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Probabilistic mixtures in control

f (d) =
c∑

i=1

wi f (d |i).

d

f (d)

1. Low level control.

I universal approximation property,
I requires existence of reliable and numerically efficient algorithms for

parameter estimation and design of control strategy.

2. Higher level control, operator control.

I not so time critical, off-line preparatory stage becomes dominant
I Prior elicitation,
I Dimensionality reduction,
I Variable selection.
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(Kovohute Rokycany)

I 40 measured
variables

I sampling time:
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I control action in
each step

I GB of data and
growing each day
by MB
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Operator control

Ex-post analysis of recorded data reveals:

clusters?

I working modes of the machine,

I people in the loop,

I operators are free to choose ’set
points’,

I distinct performance of different
workers in terms of quality.

Basic idea: guide inexperienced operators to
better set points.
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EU project ProDaCTool, 2000–2002
U.of Reading, UTIA, TCD, Compureg, KOR



Results

Off-line tasks:

I Prior elicitation,

I Model structure selection (variable selection,
covariance structure selection).

On-line:

I Recursive estimation of mixtures of ARX
models,

I target elicitation,

I selection of visualization variables,

I recommendation generation.

M. Karny et. al,
Springer 2006,
552pp.

Software:
Mixtools,
1.8MB of C and Mat-
lab code



Relation to model-based clustering

Data sets: typically biological or social-science data. E.g. crab data:
5 dimensions of biological data (length, width, ...)

Software: mclust, a package for R language, being developped since
1989.

I Based on the Expectation Maximization (EM)
algorithm and its extensions,

I Structure determination via Bayes Information
Criteria (BIC),

I Allows various transformations of the data.

Recent problems:

I variable selection, dimensionality reduction, data
transformation

I techniques for clustering in very high dimensions can
help in lower dimensions [Murtagh,2006]

I fewer data points than dimensions,
I ultrametrics, relation to k-means.

Results of ProDaCTool are certainly interesting for this community.



Low level feedback Control

pressure, u thickness, y

Negative feedback: if the output is too thick, increase pressure.



Low level feedback Control

u = g(y)

pressure, u thickness, y

I Classical control is deterministic. g() is designed using laws of
physics.

I Problem with uncertainty:

I material quality,
I internal state of the machine,
I sensors.

I Robust control: design g() that performs well for a range of possible
values.



Low level feedback Control

u = g(y)

pressure, u thickness, y

y = h(u)

I Adaptive control:

I model of the machine yt = h(ut) is recursively estimated,
I the control strategy is adapted in each step.

I Many possible approaches: gradient-based, neural network, AI, etc.

I Bayesian identification, Peterka [1981]

I Bayesian idea is too scary for control engineers,
I Control systems are too complex for statisticians (optimality,

consistency, etc.).
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Why is estimation for control application different and
difficult?

1. Nothing is i.i.d., when it is we have nothing to do.

2. Restrictions: recursivity, infinite number of data, memory,
computational time, etc.

3. Concerns about pole and zero placement.

4. Feedback. Changes model structure!

Example
ARX(2) model: yt = ayt−1 + but + et .
The aim is to approach yt → 0. Best control strategy is:

ut = −â/b̂ yt−1 =⇒ yt = (a− âb/b̂)yt−1 + et .

Dual control, Feldbaum, [1960], a compromise between information
richness and good control.
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Bayesian Adaptive Control

Based on probabilistic dynamic model:

yt ∼ f (yt |ψt , θ).

vector ψt is composed of observations, e.g.
ψt = [ut−20, ut−21, . . . yt−1, yt−1, . . .].

Off-line:

On-line:

1. update posterior parameter density

f (θ|y(1:t), ψ(1:t)) ∝ f (yt |ψt , θ)× . . . f (y1|ψ1, θ)× f0(θ)

∝ f (yt |ψt , θ)× f (θ|y(1:t−1), ψ(1:t−1)),

o(1:t) = [o1, o2, . . . ot ].

2. find such control action ut+1 which minimizes expected future loss.
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Recursive estimation

Evaluation of the Bayes rule for t = 1, 2, . . . ,∞:

f (θ|y(1:t), ψ(1:t)) ∝ f (yt |ψt , θ)f (θ|y(1:t−1), ψ(1:t−1)).

It is possible only if finite-dimensional sufficient statistics exist for all t:

f
(
θ|y(1:t), ψ(1:t)

)
= f (θ|Vt) .

This is guaranteed only within the exponential family:

f (yt |ψt , θ) = A(θ) exp (〈B(yt , ψt),C (θ)〉+ D(yt , ψt)) .

Then
f (θ|Vt , νt) ∝ Aνt (θ) exp (〈Vt ,C (θ)〉)

Vt = Vt−1 + B(yt , ψt), νt = νt−1 + 1.

(Geometric approach, Kulhavý [1990]: estimating weights of a mixture.)
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Limitations of EF

1. Few autoregressive members: Normal for continuous and
Multinomial for discrete.
Poisson distribution is in the exponential family:

f (yt |λ) = Po (λ) = exp (−λ)︸ ︷︷ ︸
A

exp

 yt︸︷︷︸
B

log (λ)︸ ︷︷ ︸
C

− log yt !︸ ︷︷ ︸
D

 ,

2nd order auto-regressive Poisson distribution:

f (yt |θ, yt−1, tt−2) = Po (θ1yt−1 + θ2yt−2)

= exp (−θ1yt−1 − θ2yt−2)×
exp (yt (log (θ1yt−1 + θ2yt−2))− log yt !) ,

2. Assumption of time-invariant parameters.
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Time-varying parameters

Approaches:

1. Windowing, Jazwinski [1979]. Estimation is performed only on the
last h data.

©+ allows to use off-line estimation techniques.
©− could introduce time-delay (e.g. median estimation). (The worst

artefact in control).

2. Forgetting. Bayesian interpretation, Kulhavý and Zarrop [1993], as a
projection from two possible hypothesis into EF.

©+ has the same algebraic form as updates in EF,
©− difficulties in finding alternative hypotheses.

3. Bayesian filtering, Doucet et al. [2001]. Extension via parameter
evolution model, f (θt |θt−1)

©+ accuracy,
©− computationally expensive, difficulties in designing the model.
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Why ARX models?

I experience: adaptive control of metal rolling mill, Ettler [1986],

I conjugate prior, analytical solution of recursive updates,

I (relatively) easy model structure determination (heuristic algorithm),

I computationally efficient and robust numerical algorithms via LD
decompositions of Vt = L′tDtLt ,

Lt = υ(Lt−1, yt , ψt), Dt = υ(Dt−1, yt , ψt),

I evaluation of predictive (marginal) probabilities of data,

I reliable methods for design of control strategy (Riccatti
equation).

I Mixtures of ARX might be controllable by linear combination of
Riccatti equations.



Recursive estimation of a mixture model

EM algorithm: maximum likelihood

f (yt |Θ, ψt) =

∫
f (yt , lt |Θ, ψt)dlt =

c∑
i=1

fi (yt |θ(i), ψ
(i)
t , lt) f (lt)︸︷︷︸

wi

’Missing data’: component label, lt ,
Parameters: parameters of components, θ

E-step: compute expectation
f (θ|H) ∝

∫
f (lt |y(1:t), u(1:t), Θ̂t) ln f (lt ,Θ|H)dlt

M-step: find θ̂t = arg minθ f (θ|H).

Interpretation as minimization of KL-divergence, Csiszar and Tusnady
[1984], allows for recursive version.

Unsatisfactory results... after processing GB of data in Compureg and
using in advising.



Quasi-Bayes estimation

Titterington et al. [1985], extended for ARX Kárný et al. [1998] using
heuristic argument.

Recursive EM:

E-step: compute expectation
f (θ|H) =

∫
f (lt |y(1:t), u(1:t), Θ̂t−1) ln f (lt ,Θ|H)dlt

M-step: find θ̂t = arg minθ f (θ|H).

QB:

Update: f (θ|H) =
∫

f (lt |y(1:t), u(1:t)) ln f (lt ,Θ|H)dlt .

(In LD decomposition, marginal is easy to compute...)

Most of the results achieved during the project are based on this method.
Still not very satisfactory.



Variational Bayes

Ensemble learning, free entropy minimization, naive mean field,
Variational EM.

I for n →∞, VB → EM.

Functional minimization of Kullback-Leibler under conditional
independence assumption:

f (Θ, lt |H) ≈ f̃ (Θ|H) f̃ (lt |H) .

Optimum reaching algorithm:

E-step: compute expectation f̃ (Θ|H) =
∫

f̃ (lt |H) ln f (lt ,Θ|H)dlt

E2-step: find f̃ (lt |H) =
∫

f̃ (Θ|H) ln f (lt ,Θ|H)dΘ

Recursive version and proofs: Sato [2001].
Remarks:

I lower bound on marginal likelihood (no need for BIC),

I allows more complex model of weights.

Still not quite there...



Projection Bayes

Variational Bayes (and EM) optimize KL divergence

f̃ (Θ|H) = arg min
f (Θ)

D(f̃ (Θ|H)||f (Θ|H)).

Better approximation should be obtained via

f̃ (Θ|H) = arg min
f (Θ)

D(f (Θ|H)||f̃ (Θ|H)).

Bernardo [1979], which does not suffer from local minima Amari et al.
[2001].

In recursive mixture estimation it is closely related to moment matching
(with a bit of numerical optimization), Andrýsek [2005].

Finally, we have got OK from Compureg.



Sim.

PSfrag replacements

−10

−5

0

5

10

−2

0

2

4

6

8

10

12 Prior

PSfrag replacements

−3

−2

−1

0

1

2

3

−4

−3

−2

−1

0

1

2

3

4

VB

PSfrag replacements

−10

−5

0

5

10

−4

−2

0

2

4

6

8

10 QB

PSfrag replacements

−10

−8

−6

−4

−2

0

2

4

6

8

−2

0

2

4

6

8

10 PB

PSfrag replacements

−3

−2

−1

0

1

2

3

4

−4

−3

−2

−1

0

1

2

3

4

5

PSfrag replacements

−10

−5

0

5

10

−2

0

2

4

6

8

10

12

PSfrag replacements

−10

−5

0

5

10

−2

0

2

4

6

8

10

12

PSfrag replacements

−5

−4

−3

−2

−1

0

1

2

3

4

5

−2

0

2

4

6

8

PSfrag replacements

−10

−5

0

5

10

−2

0

2

4

6

8

10

PSfrag replacements

−10

−5

0

5

10

−2

0

2

4

6

8

10

12

PSfrag replacements

−10

−5

0

5

10

−2

0

2

4

6

8

10



Towards mixtures with dynamic weights

Control with mixtures with fixed weights

f (yt |Θ, ψt) =

∫
f (yt , lt |Θ, ψt)dlt =

c∑
i=1

fi (yt |θ(i), ψ
(i)
t , lt) f (lt)︸︷︷︸

wi

fails because of unrealistic assumption of conditional independence

f (lt |Θ, ψt) ≡ f (lt).

Possible models:

I Markov transition: f (lt |lt−1), estimation of transition matrix via VB,
Šḿıdl and Quinn [2005].

I Logistic regression: f (lt |ψt), can be estimated via numerical
integration, Andrýsek [2005], or potentially by marginalized particle
filter.

Challenge: design of control strategy for such models.



Conclusion

I Adaptive control is a challenging context for Bayesian techniques
with many restrictions.

I i.i.d. assumption does not hold,
I restrictions such as zero time-delay requirement rules out very high

percentage of statistical methods.

I Transfer of knowledge between statistics and control?

I statistical methods needs to be ’robustified’ for practise.
I many engineering (works-for-me) solutions needs statistical

justification,

I There are alternatives to EM algorithm. Some of them perform
better especially in recursive algorithms.
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J. Andrýsek. Estimation of Dynamic Probabilistic Mixtures. Technical
Report 2150, ÚTIA AV ČR, Praha, 2005.

J. M. Bernardo. Expected infromation as expected utility. The Annals of
Statistics, 7(3):686–690, 1979.

A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte
Carlo Methods in Practice. Springer, 2001.

P. Ettler. An adaptive controller for škoda twenty-roll cold rolling mills.
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R. Kulhavý and M. B. Zarrop. On a general concept of forgetting.
International Journal of Control, 58(4):905–924, 1993.

V. Peterka. Bayesian approach to system identification. In P. Eykhoff,
editor, Trends and Progress in System identification, pages 239–304.
Pergamon Press, Oxford, 1981.

M. Sato. Online model selection based on the variational Bayes. Neural
Computation, 13:1649–1681, 2001.

D.M. Titterington, A.F.M. Smith, and U.E. Makov. Statistical Analysis
of Finite Mixtures. John Wiley, New York, 1985.
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