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Introduction
o

Introduction: Example | - linear non-Gaussian case:linear

vs nonlinear filter (why nonlinear filtering)

Z=X+vVv

px) = > xe(-11)

2
0 otherwise

1

5 Vv € (—1, 1)
0 otherwise

Thus
E(x)=E(v)=0
var(x) = var(v) =1/3

Kalman estimate: Gaussian approximation of original pdf’s,

p(x|z) =N{x:0.5z, %}
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Introduction
@O

Introduction: Example | - linear non-Gaussian case:linear

vs nonlinear filter (why nonlinear filtering)

Exact solution is

p(x | z) = [sign(1 + z — x) — sign(—1 + z — x)][sign(x + 1) — sign(x — 1)]
2[2 — zsign(z)][sign(z + 2) — sign(z — 2)]

cov(x | z) is given by
o cov(x | 2) = g5l — (2 - 1)°] - 2 for z € (0,2)
o cov(x | 2) = szl + (2 +1)°] - & for z € (-2,0)

for mean value E[x|z] it holds that E[x|z] = 0.5z.
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kalman estimate p(x|z)

exact filtering pdf p(x|z)
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Introduction
L]

Introduction: Example Il - Moment closure problem (why

nonlinear filtering)

—_ 2
Xk+1 = fxi + Xk + Wi
where {wj } is white Gaussian process with zero mean and variance Q). Suppose that E[(x; | zK] = %, E[(x — %)% | 2] = Py

The aim is to compute
E(xesr | ) =%4y1 @ cov(xig | 2¥) = Piyy
Let us start with mean
Rieyr = Bl | 2] + gkE[x¢ | 2] = fid + gr(P + %%)
Let us define >"<ll<+1 é Xpt1 — )?,/(+1, Xy é Xg — X Then

K1 = (i + 28k%) %% + 8k57 — 8k Pk + wi

E(}1|12") = (f+28%)° P+ gi ik
—  gePr+ Qi + 2gk(fi + 28kXk) 0k
where v 2 E(x} | 2%) 6k 2 E[3 | 24
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Introduction
L]

Introduction: Stochastic system

Stochastic system

X1 = (k) +we k=0,1,2,...

X is nx dimensional vector of system state at time t;,

wy je nx dimensional state noise at time t, where tj < t < ti1,
f.() is known vector function of proper dimension

random process {wy } is white noise with known pdf p(w )

pdf of the initial state p(xp) is known.

Z) = hk(Xk) +vi k=0,1,2,..

2) is nz dimensional vector of known measurements at time tj,

vy s nz d vector of 1t noise at time £y,
random process { vy } is white noise with known pdf p(vy)

processes {w }, {v } and the random variable xy are mutually independent.
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Introduction
L]

Introduction: State estimation problem and general

solution

Recursive state estimation
@ Bayesian relation p(a, b) = p(a | b)p(b) = p(b | a)p(a)
o Filtering p(xx | z¥), prediction p(xky; | z¥), smoothing p(xx | z€*/),
/>0
@ Bayesian recursive relations

PO | 27 1)-p(zk | x)
p(zc | z71)

plxc | 2) =

plxk | Z571) I/ p(xk—1 | Z71)p(xk | Xk—1)dxi—1

— 00

Pz | 21 = / plxe | 252 plze | xe)be

—00

@ Analytical solution e.g. for linear Gaussian systems
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Introduction
L]

Introduction: Point estimates

o Mean value X£
oo
E K
X :/ xkp(xk | 2)dxk

@ Median )’EQ/’E

¢ME

X o
/ p(xk | 2¥)dx, = / p(xk | 2¥)dxy
—0o0 )A(TE
@ Maximum aposteriori probability )A(,’:”AP
VAP = arg max,, p(xk | z)
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Introduction
L]

Introduction: Point estimates - Example 1 (why density

function)

Let us calculate point estimates XMAP %E KME | for filtering pdf

p(x« | 2¥) given by
p(xx | z) =0,5—¢ x €<0,1)
—0,25—¢ x €<1,3>

=1 Xk €< 6,6+3c> proe — 0
o XMAP €< 6,6+3c>
o £ =1,25
° AME =1
X _
0.5-¢ e
0.25-¢
0 1 2 8 6 6+3¢
<MEGE gpap

X Rk
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Introduction
L]

Introduction: Point estimates - Example 2 (why density

function)
Let us calculate point estimates XMAP %E SME | for filtering pdf

p(xk | z¥) given as
p(xk | 2¥) = 0.4 - N{x, : —1,0.1} + 0.6 - N'{x, : 1,0.1}

o XMAP _ 1
o X, =02
° &,ﬁ”’E =0.69
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Introduction
o

Introduction: Basic types of pdf approximation -

Point-mass method

p(xk|z*)={P;i; Pi=p(xx € neighbourhood &;|z)},

f,' S E(N)

X2

XD
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Introduction

Introduction: Basic types of pdf approximation -
Sequential Monte Carlo method

Sequential Monte Carlo method

11 10 w1 0
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Introduction
o

Introduction: Basic types of pdf approximation - Gaussian

sum method

Gaussian sum method

N
p(xilz) = 3~ PN {xc - ik, PLY

i=1

2
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Point-Mass Method
[ ]

Point mass method: Development stages

@ Bucy, R. and K. Senne (1971): Digital synthesis of non-linear filters.
Automatica 7(3), 287-298.

@ Kramer, S. and H.W. Sorenson (1988): Recursive Bayesian
estimation using piecewise constant approximations. Automatica
24(6), 789-801.

© Simandl M., Kralovec J. , Séderstrom T. (2006): Advanced point
mass method for nonlinear state estimation, Automatica 42, Issue 7,
1133-1145
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Point-Mass Method
o

Point-mass method: Basic algorithm

Step 1: Define an initial grid for p(xo|z™"): Zo(No) = {1 =12,...,No}

Step 2 (Measurement update) Time k: Compute p(xx|z*) for =x(Nk)

— _ N —
P& 129) = o L p(€,; 12K 1) by (k= hi(4)) ek = Sk A p(E ;1251 by, 2k — hi(€,))
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Point-Mass Method
o

Point-mass method: Basic algorithm

Step 3: Transformation = (/N) s Hi+1(Nk);

fi

Ek(Nk) Hk+1(Nk)
Step 4: Redefine Hk+1(Nk)Z Ek+1(Nk+1) = {§k+17j;j =1,2,..., Nk+1}
Step 5: Compute p(xx;1|z¥) for = 11(Niks1)

N
p(§k+1,j|zk) = Z Ag,; p(§ki‘zk) ka(§k+1,j - Qk+1,;)

i=1
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Point-Mass Method
o

Point-mass method: Weaknesses of standard algorithm

o the setting of the number of grid points not
specified

o incomplete description of grid design
o minimum sufficient number of grid points not specified

o enormous computational demands, especially for
multimodal pdf's

o multigrid representation
o grid splitting
o grid merging
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Grid design
[ ]

Grid design: Anticipative approach

@ The task is to set a suitable number Ny, of grid points for the grid
k41 (Niy1)

o It will affect the approximation quality of the discrete convolution at
the next time step k + 2.

@ The idea of the anticipative approach: Design of the grid is based on
its future behaviour respecting characteristics of the system
The number of grid points Ny is determined by
e the length of a significant support Ik 1 of p(xxy1]|z¥)
@ by the distance A&x11 of two neighbouring grid points.
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Grid design
[ ]

Grid design: Anticipative approach (cont'd)

The convolution integral written for a single point Xj2

P(Xii2|2*h) = /P(Xk+1|2k+1) P(Xks2]Xkt1) dxkr1

can be approximated by

N1
P(Xk+2|2k+l) ~ Abk+1 Z 'Dk+1\k+1,j Pwk+1(Xk+2 - 77k+2,j)
=
where n12j = fip1(Ekray), and Abpyy = Ayryj forj=1,..., Neya,

@ It is necessary to provide enough grid points 912 ; € Hiy2(Nkt1) in
the neighbourhood of the point Xy 2 € lx1» to ensure a sufficient
approximation quality of the convolution.

@ The size of the neighbourhood of Xj., is determined by the variance
of the state noise wy. 1 because Xy can be interpreted as the
mean value of the random variable si;, with a pdf defined as

P(Sk+2) = Pwipr (Xk+2 — Sk+2)-
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Grid design
o

Grid design: Anticipative approach (cont'd)

A case where the support of the pdf’s p, ., (Xki2 — sk42) is covered by
at least three points 912 € Hiyo(Nit1)

P X 27 Si0)
r1
> > 30¢3¢ > R e — e TRRRE . RTE RPN S T
n ) x
k+2, j Kk+2 Ska2

Figure: The covering of supports of the pdf's py, ., (Xki2 — Sk+2) by grid points
Nk+2,j- 1he point X0 is denoted by the circle and points 72 ; are denoted by
X-marks.

Miroslav Simandl University in West Bohemia in Pilsen Department of Cybernetics

POINT-MASS METHOD



Grid design
[ ]

Grid design: Anticipative approach (cont'd)

The “sufficiency” of the number Ny of grid points 1> ; may be
expressed by

@ a> 0 - the length of a non-negligible support of p, .,

e me {1,2,3,...} - the covering of the support by grid points

The parameter a determines what probability P, given by p,, ., will be
taken for non-negligible

P(—a\/ Qk+1 < Wiq1 < ay Qk+1) =P,

The parameter m expresses the requirement that at least m grid points
Mk42,j cover the significant support of p,, , and thus

(Xk+2 — Mk12,4) € {—a\/ Qk+1, aV/ Qk+1}

for any point Xy1o € lxio.

a .
Ank+2,j S 2; V Qk+1; J = 172)"'7N/<+1
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Grid design
L]

Grid design: Anticipative approach (cont'd)

The condition should be modified for A&y, ; because distances for the
points Nxt2,j € Hiy2(Nis1) can be set only via the grid points

&k+1,j € =k+1(Nikt1). Using the well-known relation for transformation of
random variables

P .
k41 k+1lk+1,j .
p5k+2‘zk+l (nk+2’j|z * ) = = 17 27 °oog Nk+1
| Jier1(Eis1)]
df, .
where Jii1(Xkt1) = %ﬁ*l), yields

Anicyzj = |1 (Eks1)| Abisr

where the index j in A1, can be omitted because this distance is
assumed to be constant.
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Grid design
[ ]

Grid design: Anticipative approach (cont'd)

Now
a =il .
Ayy1 < 2; V Qk+1 ’Jk+1(fk+1,j)‘ s =12, Ny
Since &1, are not known yet, any point of the significant support /x41
of the predictive pdf p(xx11|z) must fulfill
-1

A§k+1 < 2%\/ Qk+1 max |Jk+1(Xk+1)|

Xk+1€ k41

In case of more complicated functions fx1(Xk+1) it is possible to
approximate the maximum numerically as

,_max |1 (s, )]s Mern,i € Hiern (Ni) -
=1,..., Nk

!

The maximum value of the distance for the new grid A¢; ;.
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Grid design
[ ]

Grid design: Anticipative approach (cont'd)

The number of grid points should satisfy

d(he+1) _ d(hes1) -3
> = ¢ ax [J
T A, 2y Qs XkTe;:J k1 ()|

N1

with v = 2 and ly1 = [fkr1 — boky1, Gay1 + bokya]

@ Values of the parameters should satisfy the empirical conditions
b>3,a>3, m2>3, and 7 < 1 to ensure a sufficient quality of the
estimates.

@ The condition v < 1 may be used independently of a and m.

@ In practical implementations of the algorithm, the parameters b and
~ are likely to be set constant for all instants k =0,1,2,....
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Grid design

Grid design: Anticipative grid design algorithm for

one-dimensional system

© Compute estimates of the first two moments of the predictive pdf
p(x+1]2¥) as

Ni
Nk+1 = A&k E Mik+1,i Pk,
=1
N

orp1 = Dk Z Mer,i Pr,i — iegs + Qi
=1

© For a chosen b set the non-negligible support of p(xx;1|z¥) as
Ik+1 = [k+1 — bok+1, fik+1 + bok+1]. The length of the support is

d(lk+1) = 2b0’k+1 5
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© For a chosen ~ set the number of grid points Ny satisfying

bO’k 1
+ Qkﬁl max ’Jk+1(xk+1)|
Xk+1€ 1

Niy1 >

where Jii1(Xk11) = %ﬁ“). The maximum of |Jxy1(Xxks1)| is

computed analytically, if possible, or else approximated by

_max_ [k ()]s esri € Hirn(Ni) -
=1loaaag iV

@ Compute the point mass A&,1 using the chosen Ny as

d(lky1)

Agk-ﬁ-l = TH

@ Place grid points {k11,j € Zk+1(Nky1) to cover the support /i1

Nit1 + 1)

Ek+1,j = fk+1 + Abks1 (j i
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Multigrid design
o

Multigrid design

Multimodal pdf

representation of state space by one grid is unsuitable

@ covering areas of state space with negligible probability of state
presence

@ high computational demands

= introducing multigrid representation

Multigrid point-mass representation of pdf py, (xx)
o set of grids: {Zx[u](Ne[p]);p=1,..., Mk}
o set of pdf values: {Px[u]in=1,..., Mk}

o grid weight: wy[u] = A&[u] Zf";{’“‘] Puilp]

A\
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Multigrid design
(]

Multigrid design (cont'd)

Multigrid representation requires modification of the basic algorithm and
new algorithm steps

@ each grid is handled separately

— repeated application of the basic algorithm
@ each grid is evaluated by the grid weight wy[u]
@ grid management: splitting and merging

Miroslav Simandl University in West Bohemia in Pilsen Department of Cybernetics

POINT-MASS METHOD



Multigrid design
o

Multigrid design: Grid splitting using marginal pdf’s

0 -20 -10 0 10 20 -20 -10 0 10 20 -20 -10 0 10 20

0.2 0.1
pz( K(?l z k) x(k x(k

20 -15 -10 -5 0 5 10 15 20
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Multigrid design
(]

Multigrid design: Grid merging using Mahalanobis distance

@ grids are merged after the time update step

(prediction causes increase of uncertainty, transformation of grids
may cause their overlapping)

@ Mahalanobis distance decision rule: Grids are merged if one of the
M-distances between grid centers is less than 6.

1

[(my —my)"C

[(mz — m1)TC3 Y (ma — my)]? < 6

(my—m)]? <6
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Numerical illustration
°

Numerical illustration

Consider nonlinear system with Gaussian noises

1 1) (2 1
2, =0+ )

2 1 2
2y =+ w?

Zk :O.2(x,£2))2 + vk

e T ]
p(vi) = N{vi; 0,1},

p(x0) :N{xo; [ 0%19 } [ 106 0.801 H

p(xilz*) =7
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Numerical illustration
L]

Numerical illustration: Simulation results

Xo

prediction filtering
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Numerical illustration
L]

Numerical illustration: Simulation results

X1

prediction filtering
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Numerical illustration
L]

Numerical illustration: Simulation results

X2

prediction filtering
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Numerical illustration
L]

Numerical illustration: Simulation results

X3

prediction filtering
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Numerical illustration
L]

Numerical illustration: Simulation results

X4

prediction filtering
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Numerical illustration
L]

Numerical illustration: Simulation results

X5

prediction filtering
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Numerical illustration
L]

Numerical illustration: Simulation results

X6

prediction filtering
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Numerical illustration
L]

Numerical illustration: Simulation results

X7

prediction filtering
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Numerical illustration
L]

Numerical illustration: Simulation results

Xg

prediction filtering
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Numerical illustration
L]

Numerical illustration: Simulation results

X9

prediction filtering
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Numerical illustration
L]

Numerical illustration: Simulation results

X10

prediction filtering
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Numerical illustration
L]

Numerical illustration: Simulation results

X11

prediction filtering

(1)
*11 11
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Numerical illustration
L]

Numerical illustration: Simulation results

X12

prediction filtering

(1) (1)
le x12
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Numerical illustration
L]

Numerical illustration: Simulation results

X13

prediction filtering
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Numerical illustration
L]

Numerical illustration: Simulation results

X14

prediction filtering

(1) (1)
x14 x14

in West Bohem of Cyberneti




Numerical illustration
L]

Numerical illustration: Simulation results

X15

prediction filtering

()
X15
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Numerical illustration
o

Numerical illustration: Approximation quality and

computational demands

Algorithm CPU Time Avg. Vi Avg. N
(sec)
Basic 1235 0.0895 4141
Anticipative 182 0.0073 1964
Boundary-Based 210 0.0068 1675
Thrifty Convolution 59 0.0068 1675
Multigrid Design 72 0.0068 702
Particle Filter #1 1 0.7039 500
Particle Filter #2 35 0.4386 4000
Particle Filter #3 6830 0.1105 50000

V=1~ [ min{plxclz}), plxiz")} dx
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Conclusion

Conclusion

Advanced point-mass method was presented
@ Basic point-mass method
@ Anticipative approach
@ Multigrid design
@ Splitting and merging
Q@ Simandl, M., J. Kralovec and T. Soderstrom (2002): Anticipative

grid design in point-mass approach to nonlinear state estimation.
IEEE Transactions on Automatic Control 47(4), 699-702.

@ Simandl M., Krélovec J. , Séderstrom T. (2006): Advanced point
mass method for nonlinear state estimation, Automatica 42, Issue 7,
1133-1145
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