Introduction	Point-Mass Method	Grid design	Multigrid design	Numerical illustration	Conclusion

POINT-MASS METHOD

Miroslav Šimandl

University in West Bohemia in Pilsen Department of Cybernetics

May 15, 2007

Miroslav Šimandl

POINT-MASS METHOD

University in West Bohemia in Pilsen Department of Cybernetics

Introduction	Point-Mass Method	Grid design	Multigrid design	Numerical illustration	Conclusion

- 2 Point-Mass Method
- 3 Grid design
- 4 Multigrid design
- 5 Numerical illustration

Miroslav Šimandl POINT-MASS METHOD Introduction Point-Mass Method Grid design Multigrid design OCON Conclusion OCO C

$$z = x + v$$

$$p(x) = \frac{1}{2} \quad x \in (-1, 1)$$

$$= 0 \quad \text{otherwise}$$

$$p(v) = \frac{1}{2} \quad v \in (-1, 1)$$

$$= 0 \quad \text{otherwise}$$

Thus

$$E(x) = E(v) = 0$$
$$var(x) = var(v) = 1/3$$

Kalman estimate: Gaussian approximation of original pdf's,

$$p(x \mid z) = \mathcal{N}\{x : 0.5z, \frac{1}{6}\}$$

Miroslav Šimandl

Introduction Point-Mass Method Grid design Multigrid design OCOC Conclusion Conclusion OCOC CO

Exact solution is

$$p(x \mid z) = \frac{[\operatorname{sign}(1 + z - x) - \operatorname{sign}(-1 + z - x)][\operatorname{sign}(x + 1) - \operatorname{sign}(x - 1)]}{2[2 - z\operatorname{sign}(z)][\operatorname{sign}(z + 2) - \operatorname{sign}(z - 2)]}$$

$$cov(x \mid z)$$
 is given by

•
$$cov(x \mid z) = \frac{1}{3(2-z)}[1-(z-1)^3] - \frac{z^2}{4}$$
 for $z \in (0,2)$

•
$$cov(x \mid z) = \frac{1}{3(z+2)}[1 + (z+1)^3] - \frac{z^2}{4}$$
 for $z \in (-2,0)$

for mean value E[x|z] it holds that E[x|z] = 0.5z.

Miroslav Šimandl

Introduction	Point-Mass Method	Grid design	Multigrid design	Numerical illustration	Conclusion
000000000000000000000000000000000000000					

University in West Bohemia in Pilsen Department of Cybernetics

Introduction Point-Mass Method Grid design Multigrid design OCOCO Conclusion Conclusion OCOCO CONCO CONC

$$x_{k+1} = f_k x_k + g_k x_k^2 + w_k$$

where $\{w_k\}$ is white Gaussian process with zero mean and variance Q_k . Suppose that $E[(x_k | z^k] = \hat{x}_k, E[(x_k - \hat{x}_k)^2 | z^k] = P_k$ The aim is to compute

$$E(x_{k+1} \mid z^k) = \hat{x}'_{k+1}$$
 a $cov(x_{k+1} \mid z^k) = P'_{k+1}$

Let us start with mean

$$\begin{aligned} \hat{x}'_{k+1} &= f_k \mathsf{E}[x_k \mid z^k] + g_k \mathsf{E}[x_k^2 \mid z^k] = f_k \hat{x}_k + g_k (P_k + \hat{x}_k^2) \\ \text{tr us define } \tilde{x}'_{k+1} \stackrel{\triangle}{=} x_{k+1} - \tilde{x}'_{k+1} \cdot \tilde{x}_k \stackrel{\triangle}{=} x_k - \hat{x}_k \text{ Then} \\ \tilde{x}'_{k+1} &= (f_k + 2g_k \hat{x}_k) \tilde{x}_k + g_k \tilde{x}_k^2 - g_k P_k + w_k \\ \\ &= (f_k + 2g_k \hat{x}_k)^2 P_k + g_k^2 \gamma_k \\ &- g_k^2 P_k + Q_k + 2g_k (f_k + 2g_k \hat{x}_k) \delta_k \end{aligned}$$
where $\gamma \stackrel{\triangle}{=} \mathsf{E}(\tilde{x}_k^4 \mid z^k) \quad \delta_k \stackrel{\triangle}{=} \mathsf{E}[\tilde{x}_k^3 \mid z^k]$

Wher Miroslav Šimandl

Introduction ○○○○●○○○○○○	Point-Mass Method	Grid design	Multigrid design	Numerical illustration	Conclusion
Introduct	tion: Stochas	stic syste	m		

Stochastic system

$$x_{k+1} = f_k(x_k) + w_k$$
 $k = 0, 1, 2, ...$

- x_k is nx dimensional vector of system state at time t_k,
- w_k je nx dimensional state noise at time t, where t_k ≤ t < t_{k+1},
- $f_k(\cdot)$ is known vector function of proper dimension
- random process { w_k } is white noise with known pdf p(w_k)
- pdf of the initial state p(x₀) is known.

$$z_k = h_k(x_k) + v_k$$
 $k = 0, 1, 2, ...$

- z_k is nz dimensional vector of known measurements at time t_k
- v_k is nz dimensional vector of measurement noise at time t_k
- random process $\{v_k\}$ is white noise with known pdf $p(v_k)$
- processes {w_k}, {v_k} and the random variable x₀ are mutually independent.

Miroslav Šimandl POINT-MASS METHOD Recursive state estimation

- Bayesian relation $p(a, b) = p(a \mid b)p(b) = p(b \mid a)p(a)$
- Filtering $p(x_k \mid z^k)$, prediction $p(x_{k+l} \mid z^k)$, smoothing $p(x_k \mid z^{k+l})$, l > 0
- Bayesian recursive relations

$$p(x_k \mid z^k) = \frac{p(x_k \mid z^{k-1}).p(z_k \mid x_k)}{p(z_k \mid z^{k-1})}$$

$$p(x_k \mid z^{k-1}) = \int_{-\infty}^{\infty} p(x_{k-1} \mid z^{k-1})p(x_k \mid x_{k-1})dx_{k-1}$$

$$p(z_k \mid z^{k-1}) = \int_{-\infty}^{\infty} p(x_k \mid z^{k-1})p(z_k \mid x_k)dx_k$$

• Analytical solution e.g. for linear Gaussian systems

POINT-MASS METHOD

Miroslav Šimandl

Introduction	Point-Mass Method	Grid design	Multigrid design	Numerical illustration	Conclusion
Introduct	tion: Point e	stimates			

• Mean value $\hat{\mathbf{x}}_k^E$

$$\hat{\mathbf{x}}_k^{\mathsf{E}} = \int_{-\infty}^\infty \mathbf{x}_k p(\mathbf{x}_k \mid z^k) d\mathbf{x}_k$$

• Median $\hat{\mathbf{x}}_k^{ME}$

$$\int_{-\infty}^{\hat{\mathbf{x}}_k^{ME}} p(\mathbf{x}_k \mid z^k) d\mathbf{x}_k = \int_{\hat{\mathbf{x}}_k^{ME}}^{\infty} \ p(\mathbf{x}_k \mid z^k) d\mathbf{x}_k$$

• Maximum aposteriori probability $\hat{\mathbf{x}}_k^{MAP}$

$$\hat{\mathbf{x}}_k^{MAP} = arg \ max_{\mathbf{x}_k} \ \ p(\mathbf{x}_k \mid z^k)$$

Miroslav Šimandl

Introduction Point-Mass Method Grid design Multigrid design Occord Occor

Let us calculate point estimates $\hat{x}_{k}^{MAP}, \hat{x}_{k}^{E}, \hat{x}_{k}^{ME}$, for filtering pdf $p(x_k \mid z^k)$ given by $p(x_k \mid z^k) = 0, 5 - \varepsilon \quad x_k \in <0, 1)$ $=0.25 - \varepsilon \quad x_k \in <1.3>$ $x_k \in <6, 6+3\varepsilon > pro \varepsilon \rightarrow 0$ =1• $\hat{x}_{k}^{MAP} \in < 6, 6 + 3\varepsilon >$ • $\hat{x}_{\mu}^{E} = 1,25$ • $\hat{x}_{\mu}^{ME} = 1$ 1 0.5-*ε* 0.25-ε

2

°ME °E

3

6 6+3ε

≎MAP

POINT-MASS METHOD

0

Let us calculate point estimates \hat{x}_{k}^{MAP} , \hat{x}_{k}^{E} , \hat{x}_{k}^{ME} , for filtering pdf $p(x_{k} \mid z^{k})$ given as

$$p(x_k \mid z^k) = 0.4 \cdot \mathcal{N}\{x_k : -1, 0.1\} + 0.6 \cdot \mathcal{N}\{x_k : 1, 0.1\}$$

•
$$\hat{x}_{k}^{MAP} = 1$$

• $\hat{x}_{k}^{E} = 0.2$
• $\hat{x}_{k}^{ME} = 0.69$

University in West Bohemia in Pilsen Department of Cybernetics

- Bucy, R. and K. Senne (1971): Digital synthesis of non-linear filters. Automatica 7(3), 287–298.
- Kramer, S. and H.W. Sorenson (1988): Recursive Bayesian estimation using piecewise constant approximations. Automatica 24(6), 789–801.
- Šimandl M., Královec J., Söderström T. (2006): Advanced point mass method for nonlinear state estimation, Automatica 42, Issue 7, 1133-1145

Step 1: Define an initial grid for $p(\mathbf{x}_0|\mathbf{z}^{-1})$: $\Xi_0(N_0) = \{\xi_{0i}; i = 1, 2, ..., N_0\}$

Step 2 (Measurement update) Time k: Compute $p(\mathbf{x}_k | \mathbf{z}^k)$ for $\Xi_k(N_k)$ $p(\underline{\xi}_{ki} | \mathbf{z}^k) = c_k^{-1} p(\underline{\xi}_{ki} | \mathbf{z}^{k-1}) p_{V_k}(\mathbf{z}_k - \mathbf{h}_k(\underline{\xi}_{ki})) c_k = \sum_{i=1}^{N_k} \Delta \underline{\xi}_{ki} p(\underline{\xi}_{ki} | \mathbf{z}^{k-1}) p_{V_k}(\mathbf{z}_k - \mathbf{h}_k(\underline{\xi}_{ki}))$

Miroslav Šimandl

Step 3: Transformation $\equiv_k(N_k) \xrightarrow{\mathbf{f}_k} H_{k+1}(N_k)$;

Step 4: Redefine $H_{k+1}(N_k)$: $\Xi_{k+1}(N_{k+1}) = \{ \underline{\xi}_{k+1,j} : j = 1, 2, ..., N_{k+1} \}$ Step 5: Compute $p(\mathbf{x}_{k+1} | \mathbf{z}^k)$ for $\Xi_{k+1}(N_{k+1})$

$$p(\underline{\xi}_{k+1,j}|\mathbf{z}^{k}) = \sum_{i=1}^{N_{k}} \Delta \underline{\xi}_{ki} \, p(\underline{\xi}_{ki}|\mathbf{z}^{k}) \, p_{w_{k}}(\underline{\xi}_{k+1,j} - \underline{\eta}_{k+1,i})$$

Miroslav Šimandl

POINT-MASS METHOD

University in West Bohemia in Pilsen Department of Cybernetics

- the setting of the number of grid points not specified
 - incomplete description of grid design
 - minimum sufficient number of grid points not specified
- enormous computational demands, especially for multimodal pdf's
 - multigrid representation
 - grid splitting
 - grid merging

 Introduction
 Point-Mass Method
 Grid design
 Multigrid design
 Numerical illustration
 Conclusion

 Grid design:
 Anticipative approach

- The task is to set a suitable number N_{k+1} of grid points for the grid $\Xi_{k+1}(N_{k+1})$
- It will affect the approximation quality of the discrete convolution at the *next* time step k + 2.
- The idea of the anticipative approach: Design of the grid is based on its future behaviour respecting characteristics of the system

The number of grid points N_{k+1} is determined by

- the length of a significant support I_{k+1} of $p(x_{k+1}|z^k)$
- by the distance $\Delta \xi_{k+1}$ of two neighbouring grid points.

Introduction Point-Mass Method Grid design Multigrid design Numerical illustration Conclusion Grid design: Anticipative approach (cont'd)

The convolution integral written for a single point X_{k+2}

$$p(X_{k+2}|z^{k+1}) = \int p(x_{k+1}|z^{k+1}) \, p(X_{k+2}|x_{k+1}) \, \mathrm{d}x_{k+1}$$

can be approximated by

$$p(X_{k+2}|z^{k+1}) \approx \Delta \xi_{k+1} \sum_{j=1}^{N_{k+1}} P_{k+1|k+1,j} p_{w_{k+1}}(X_{k+2} - \eta_{k+2,j})$$

where $\eta_{k+2,j} = f_{k+1}(\xi_{k+1,j})$, and $\Delta \xi_{k+1} = \Delta \xi_{k+1,j}$ for $j = 1, ..., N_{k+1}$,

- It is necessary to provide enough grid points $\eta_{k+2,j} \in H_{k+2}(N_{k+1})$ in the neighbourhood of the point $X_{k+2} \in I_{k+2}$ to ensure a sufficient approximation quality of the convolution.
- The size of the neighbourhood of X_{k+2} is determined by the variance of the state noise w_{k+1} because X_{k+2} can be interpreted as the mean value of the random variable s_{k+2} with a pdf defined as $p(s_{k+2}) = p_{w_{k+1}}(X_{k+2} s_{k+2})$.

POINT-MASS METHOD

Miroslav Šimandl

A case where the support of the pdf's $p_{w_{k+1}}(X_{k+2} - s_{k+2})$ is covered by at least three points $\eta_{k+2,j} \in H_{k+2}(N_{k+1})$

Figure: The covering of supports of the pdf's $p_{w_{k+1}}(X_{k+2} - s_{k+2})$ by grid points $\eta_{k+2,j}$. The point X_{k+2} is denoted by the circle and points $\eta_{k+2,j}$ are denoted by \times -marks.

 Introduction
 Point-Mass Method
 Grid design
 Multigrid design
 Numerical illustration
 Conclusion

 Grid design:
 Anticipative approach (cont'd)

The "sufficiency" of the number N_{k+1} of grid points $\eta_{k+2,j}$ may be expressed by

- a > 0 the length of a non-negligible support of $p_{w_{k+1}}$
- $m \in \{1,2,3,\ldots\}$ the covering of the support by grid points

The parameter a determines what probability P_a given by $p_{w_{k+1}}$ will be taken for non-negligible

$$P(-a\sqrt{Q_{k+1}} \le w_{k+1} \le a\sqrt{Q_{k+1}}) = P_a$$

The parameter *m* expresses the requirement that at least *m* grid points $\eta_{k+2,j}$ cover the significant support of $p_{w_{k+1}}$ and thus

$$(X_{k+2} - \eta_{k+2,j}) \in \left[-a\sqrt{Q_{k+1}}, a\sqrt{Q_{k+1}}\right]$$

for any point $X_{k+2} \in I_{k+2}$.

$$\Delta \eta_{k+2,j} \le 2 \frac{a}{m} \sqrt{Q_{k+1}}; \quad j = 1, 2, \dots, N_{k+1}$$

University in West Bohemia in Pilsen Department of Cybernetics

Miroslav Šimandl

The condition should be modified for $\Delta \xi_{k+1,j}$ because distances for the points $\eta_{k+2,j} \in H_{k+2}(N_{k+1})$ can be set only via the grid points $\xi_{k+1,j} \in \Xi_{k+1}(N_{k+1})$. Using the well-known relation for transformation of random variables

$$\rho_{s_{k+2}|z^{k+1}}(\eta_{k+2,j}|z^{k+1}) = \frac{P_{k+1|k+1,j}}{\left|J_{k+1}(\xi_{k+1,j})\right|}; \quad j = 1, 2, \dots, N_{k+1}$$

where $J_{k+1}(x_{k+1}) = \frac{df_{k+1}(x_{k+1})}{dx_{k+1}}$, yields

$$\Delta \eta_{k+2,j} = \left| J_{k+1}(\xi_{k+1,j}) \right| \Delta \xi_{k+1}$$

where the index j in $\Delta \xi_{k+1,j}$ can be omitted because this distance is assumed to be constant.

 Introduction
 Point-Mass Method
 Grid design
 Multigrid design
 Numerical illustration
 Conclusion

 Occorrelation
 Occorelati

Now

$$\Delta \xi_{k+1} \leq 2 \frac{a}{m} \sqrt{Q_{k+1}} \left| J_{k+1}(\xi_{k+1,j}) \right|^{-1}; \quad j = 1, 2, \dots, N_{k+1}$$

Since $\xi_{k+1,j}$ are not known yet, any point of the significant support I_{k+1} of the predictive pdf $p(x_{k+1}|z^k)$ must fulfill

$$\Delta \xi_{k+1} \leq 2 \frac{a}{m} \sqrt{Q_{k+1}} \left[\max_{x_{k+1} \in I_{k+1}} |J_{k+1}(x_{k+1})| \right]^{-1}$$

In case of more complicated functions $f_{k+1}(x_{k+1})$ it is possible to approximate the maximum numerically as

$$\max_{i=1,\dots,N_k} |J_{k+1}(\eta_{k+1,i})|, \quad \eta_{k+1,i} \in H_{k+1}(N_k) .$$

The maximum value of the distance for the new grid $\Delta \xi_{k+1}^*$.

Miroslav Šimandl POINT-MASS METHOD

The number of grid points should satisfy

$$N_{k+1} \geq \frac{\mathrm{d}(I_{k+1})}{\Delta \xi_{k+1}^*} = \frac{\mathrm{d}(I_{k+1})}{2\gamma} Q_{k+1}^{-\frac{1}{2}} \max_{x_{k+1} \in I_{k+1}} |J_{k+1}(x_{k+1})|$$

with $\gamma = \frac{a}{m}$ and $I_{k+1} = [\hat{\eta}_{k+1} - b\sigma_{k+1}, \hat{\eta}_{k+1} + b\sigma_{k+1}]$

- Values of the parameters should satisfy the empirical conditions $b \ge 3$, $a \ge 3$, $m \ge 3$, and $\gamma \le 1$ to ensure a sufficient quality of the estimates.
- The condition $\gamma \leq 1$ may be used independently of a and m.
- In practical implementations of the algorithm, the parameters b and γ are likely to be set constant for all instants k = 0, 1, 2, ...

Introduction Point-Mass Method Grid design Multigrid design Occord Occor

Compute estimates of the first two moments of the predictive pdf p(x_{k+1}|z^k) as

$$\hat{\eta}_{k+1} = \Delta \xi_k \sum_{i=1}^{N_k} \eta_{k+1,i} \, P_{k,i}$$

$$\sigma_{k+1} = \Delta \xi_k \sum_{i=1}^{N_k} \eta_{k+1,i}^2 P_{k,i} - \hat{\eta}_{k+1}^2 + Q_k$$

2 For a chosen *b* set the non-negligible support of $p(x_{k+1}|z^k)$ as $I_{k+1} = [\hat{\eta}_{k+1} - b\sigma_{k+1}, \hat{\eta}_{k+1} + b\sigma_{k+1}]$. The length of the support is

$$\mathrm{d}(I_{k+1})=2b\sigma_{k+1}.$$

University in West Bohemia in Pilsen Department of Cybernetics

Introduction	Point-Mass Method	Grid design	Multigrid design	Numerical illustration	Conclusion
000000000000	00000	00000000	0000	000	

③ For a chosen γ set the number of grid points N_{k+1} satisfying

$$N_{k+1} \geq rac{b\sigma_{k+1}}{\gamma} Q_{k+1}^{-rac{1}{2}} \max_{x_{k+1} \in I_{k+1}} |J_{k+1}(x_{k+1})|$$

where $J_{k+1}(x_{k+1}) = \frac{df_{k+1}(x_{k+1})}{dx_{k+1}}$. The maximum of $|J_{k+1}(x_{k+1})|$ is computed analytically, if possible, or else approximated by

$$\max_{i=1,...,N_k} |J_{k+1}(\eta_{k+1,i})|, \quad \eta_{k+1,i} \in H_{k+1}(N_k) .$$

• Compute the point mass $\Delta \xi_{k+1}$ using the chosen N_{k+1} as

$$\Delta\xi_{k+1}=\frac{d(I_{k+1})}{N_{k+1}}$$

9 Place grid points $\xi_{k+1,j} \in \Xi_{k+1}(N_{k+1})$ to cover the support I_{k+1}

$$\xi_{k+1,j} = \hat{\eta}_{k+1} + \Delta \xi_{k+1} \left(j - \frac{N_{k+1} + 1}{2} \right)$$

Miroslav Šimandl

Introduction	Point-Mass Method	Grid design	Multigrid design ●○○○	Numerical illustration	Conclusion
Multigrid	design				

Multimodal pdf

representation of state space by one grid is unsuitable

- covering areas of state space with negligible probability of state presence
- high computational demands

 \Rightarrow introducing multigrid representation

Multigrid point-mass representation of pdf $p_{\mathbf{x}_k}(\mathbf{x}_k)$

- set of grids: $\{ \Xi_k[\mu](N_k[\mu]); \mu = 1, \dots, M_k \}$
- set of pdf values: $\{\mathcal{P}_k[\mu]; \mu = 1, \dots, M_k\}$
- grid weight: $\omega_k[\mu] = \Delta \xi_k[\mu] \sum_{i=1}^{N_k[\mu]} P_{ki}[\mu]$

Miroslav Šimandl

Introduction 0000000000000	Point-Mass Method	Grid design	Multigrid design ○●○○	Numerical illustration	Conclusion
Multigrid	l design (co	nt'd)			

Multigrid representation requires modification of the basic algorithm and new algorithm steps

- each grid is handled separately
 - repeated application of the basic algorithm
- each grid is evaluated by the grid weight $\omega_k[\mu]$
- grid management: splitting and merging

- grids are merged after the time update step (prediction causes increase of uncertainty, transformation of grids may cause their overlapping)
- Mahalanobis distance decision rule: Grids are merged if one of the M-distances between grid centers is less than δ .

$$\begin{split} & [(m_1-m_2)^{\mathrm{T}} \mathbf{C}_1^{-1} (m_1-m_2)]^{\frac{1}{2}} < \delta \\ & [(m_2-m_1)^{\mathrm{T}} \mathbf{C}_2^{-1} (m_2-m_1)]^{\frac{1}{2}} < \delta \end{split}$$

Introduction	Point-Mass Method	Grid design	Multigrid design	Numerical illustration	Conclusion
Numerica	al illustratior	1			

Consider nonlinear system with Gaussian noises

$$\begin{aligned} x_{k+1}^{(1)} &= x_k^{(1)} x_k^{(2)} + w_k^{(1)} \\ x_{k+1}^{(2)} &= x_k^{(1)} + w_k^{(2)} \\ z_k &= 0.2 (x_k^{(2)})^2 + v_k \end{aligned}$$

$$p(w_k) = \mathcal{N}\left\{\mathbf{w}_k; \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 0.25 & 0\\0 & 10^{-4} \end{bmatrix}\right\},$$
$$p(v_k) = \mathcal{N}\left\{v_k; 0, 1\right\},$$
$$p(x_0) = \mathcal{N}\left\{\mathbf{x}_0; \begin{bmatrix} 0.1\\0.99 \end{bmatrix}, \begin{bmatrix} 16 & 0\\0 & 0.001 \end{bmatrix}\right\}$$

 $p(\mathbf{x}_k|\mathbf{z}^k) = ?$

University in West Bohemia in Pilsen Department of Cybernetics

University in West Bohemia in Pilsen Department of Cybernetics

University in West Bohemia in Pilsen Department of Cybernetics

POINT-MASS METHOD

University in West Bohemia in Pilsen Department of Cybernetics

University in West Bohemia in Pilsen Department of Cybernetics

POINT-MASS METHOD

University in West Bohemia in Pilsen Department of Cybernetics

POINT-MASS METHOD

University in West Bohemia in Pilsen Department of Cybernetics

University in West Bohemia in Pilsen Department of Cybernetics

University in West Bohemia in Pilsen Department of Cybernetics

University in West Bohemia in Pilsen Department of Cybernetics

University in West Bohemia in Pilsen Department of Cybernetics

University in West Bohemia in Pilsen Department of Cybernetics

Introduction Point-Mass Method Grid design Multigrid design Ococo Ococo

Algorithm	CPU Time (sec)	Avg. V_k	Avg. N _k
Basic	1235	0.0895	4141
Anticipative	182	0.0073	1964
Boundary-Based	210	0.0068	1675
Thrifty Convolution	59	0.0068	1675
Multigrid Design	72	0.0068	702
Particle Filter $\#1$	1	0.7039	500
Particle Filter $#2$	35	0.4386	4000
Particle Filter $#3$	6830	0.1105	50000

$$V_k = 1 - \int \min\{\hat{p}(\mathbf{x}_k | \mathbf{z}^k), p(\mathbf{x}_k | \mathbf{z}^k)\} d\mathbf{x}_k$$

Introduction	Point-Mass Method	Grid design	Multigrid design	Numerical illustration	Conclusion
Conclusio	on				

Advanced point-mass method was presented

- Basic point-mass method
- Anticipative approach
- Multigrid design
- Splitting and merging
- Šimandl, M., J. Královec and T. Söderström (2002): Anticipative grid design in point-mass approach to nonlinear state estimation. IEEE Transactions on Automatic Control 47(4), 699–702.
- Šimandl M., Královec J., Söderström T. (2006): Advanced point mass method for nonlinear state estimation, Automatica 42, Issue 7, 1133–1145