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Introduction: Example I - linear non-Gaussian case:linear
vs nonlinear filter (why nonlinear filtering)

z = x + v

p(x) =
1

2
x ∈ (−1, 1)

= 0 otherwise

p(v) =
1

2
v ∈ (−1, 1)

= 0 otherwise

Thus
E (x) = E (v) = 0

var(x) = var(v) = 1/3

Kalman estimate: Gaussian approximation of original pdf’s,

p(x | z) = N{x : 0.5z ,
1

6
}
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Introduction: Example I - linear non-Gaussian case:linear
vs nonlinear filter (why nonlinear filtering)

Exact solution is

p(x | z) =
[sign(1 + z − x)− sign(−1 + z − x)][sign(x + 1)− sign(x − 1)]

2[2− z sign(z)][sign(z + 2)− sign(z − 2)]

cov(x | z) is given by

cov(x | z) = 1
3(2−z) [1− (z − 1)3]− z2

4 for z ∈ (0, 2)

cov(x | z) = 1
3(z+2) [1 + (z + 1)3]− z2

4 for z ∈ (−2, 0)

for mean value E[x |z ] it holds that E[x |z ] = 0.5z .
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Introduction: Example II - Moment closure problem (why
nonlinear filtering)

xk+1 = fkxk + gkx
2
k + wk

where {wk} is white Gaussian process with zero mean and variance Qk . Suppose that E[(xk | zk ] = x̂k , E[(xk − x̂k )2 | zk ] = Pk

The aim is to compute

E (xk+1 | zk) = x̂ ′k+1 a cov(xk+1 | zk) = P ′
k+1

Let us start with mean

x̂ ′k+1 = fkE[xk | zk ] + gkE[x2
k | zk ] = fk x̂k + gk(Pk + x̂2

k )

Let us define x̃′k+1
4
= xk+1 − x̂′k+1, x̃k

4
= xk − x̂k Then

x̃ ′k+1 = (fk + 2gk x̂k)x̃k + gk x̃
2
k − gkPk + wk

E (x̃2
k+1 | zk) = (fk + 2gk x̂k)

2Pk + g2
k γk

− g2
k Pk + Qk + 2gk(fk + 2gk x̂k)δk

where γ
4
= E (x̃4

k | zk) δk
4
= E [x̃3

k | zk ]
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Introduction: Stochastic system

Stochastic system

xk+1 = fk(xk) + wk k = 0, 1, 2, ...

xk is nx dimensional vector of system state at time tk ,

wk je nx dimensional state noise at time t, where tk ≤ t < tk+1,

fk (·) is known vector function of proper dimension

random process {wk} is white noise with known pdf p(wk )

pdf of the initial state p(x0) is known.

zk = hk(xk) + vk k = 0, 1, 2, ...

zk is nz dimensional vector of known measurements at time tk

vk is nz dimensional vector of measurement noise at time tk

random process {vk} is white noise with known pdf p(vk )

processes {wk}, {vk} and the random variable x0 are mutually independent.
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Introduction: State estimation problem and general
solution

Recursive state estimation

Bayesian relation p(a, b) = p(a | b)p(b) = p(b | a)p(a)

Filtering p(xk | zk), prediction p(xk+l | zk), smoothing p(xk | zk+l),
l > 0

Bayesian recursive relations

p(xk | zk) =
p(xk | zk−1).p(zk | xk)

p(zk | zk−1)

p(xk | zk−1) =

∫ ∞

−∞
p(xk−1 | zk−1)p(xk | xk−1)dxk−1

p(zk | zk−1) =

∫ ∞

−∞
p(xk | zk−1)p(zk | xk)dxk

Analytical solution e.g. for linear Gaussian systems
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Introduction: Point estimates

Mean value x̂E
k

x̂E
k =

∫ ∞

−∞
xkp(xk | zk)dxk

Median x̂ME
k ∫ x̂ME

k

−∞
p(xk | zk)dxk =

∫ ∞

x̂ME
k

p(xk | zk)dxk

Maximum aposteriori probability x̂MAP
k

x̂MAP
k = arg maxxk

p(xk | zk)
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Introduction: Point estimates - Example 1 (why density
function)

Let us calculate point estimates x̂MAP
k , x̂E

k , x̂ME
k , for filtering pdf

p(xk | zk) given by
p(xk | zk) = 0, 5− ε xk ∈< 0, 1)

=0, 25− ε xk ∈< 1, 3 >
=1 xk ∈< 6, 6 + 3ε > pro ε → 0

x̂MAP
k ∈< 6, 6 + 3ε >

x̂E
k = 1, 25

x̂ME
k = 1

0 1 2 3 6

0.25-ε

0.5-ε

1

6+3ε

x̂MAP
k

x̂E
kx̂ME

k
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Introduction: Point estimates - Example 2 (why density
function)

Let us calculate point estimates x̂MAP
k , x̂E

k , x̂ME
k , for filtering pdf

p(xk | zk) given as

p(xk | zk) = 0.4 · N{xk : −1, 0.1}+ 0.6 · N{xk : 1, 0.1}

x̂MAP
k = 1

x̂E
k = 0.2

x̂ME
k = 0.69
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Introduction: Basic types of pdf approximation -
Point-mass method

Point-mass method

p(xk |zk)={Pi ; Pi =p(xk ∈ neighbourhood ξi |zk)},

ξi ∈ Ξ(N)

XK
(1)

X
K

(2)
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Introduction: Basic types of pdf approximation -
Sequential Monte Carlo method

Sequential Monte Carlo method

p(xk |zk) =
N∑

i=1

w
(i)
k δ(xk − x

(i)
k )

XK
(1)

X
K

(2)
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Introduction: Basic types of pdf approximation - Gaussian
sum method

Gaussian sum method

p(xk |zk) =
N∑

i=1

α
(i)
k N{xk : µi

k ,P
i
k}

X
K

(1)

XK
(2)
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Point mass method: Development stages

1 Bucy, R. and K. Senne (1971): Digital synthesis of non-linear filters.
Automatica 7(3), 287–298.

2 Kramer, S. and H.W. Sorenson (1988): Recursive Bayesian
estimation using piecewise constant approximations. Automatica
24(6), 789–801.

3 Šimandl M., Královec J. , Söderström T. (2006): Advanced point
mass method for nonlinear state estimation, Automatica 42, Issue 7,
1133-1145
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Point-mass method: Basic algorithm

Step 1: Define an initial grid for p(x0|z−1): Ξ0(N0) = {ξ
0i
; i = 1, 2, . . . , N0}

x
0
1

x
0
2

Step 2 (Measurement update) Time k: Compute p(xk |zk) for Ξk(Nk)
p(ξ

ki
|zk ) = c

−1
k

p(ξ
ki
|zk−1) pvk

`
zk − hk (ξ

ki
)
´

ck =
PNk

i=1
∆ξ

ki
p(ξ

ki
|zk−1) pvk

`
zk − hk (ξ

ki
)
´

x
k
1

x
k
2
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Point-mass method: Basic algorithm

Step 3: Transformation Ξk(Nk)
fk7−→ Hk+1(Nk);

x
k
2

x
k
1

Ξk(Nk)

fk
7−→

x
k+1
1

x
k+1
2

Hk+1(Nk)

Step 4: Redefine Hk+1(Nk): Ξk+1(Nk+1) = {ξ
k+1,j

; j = 1, 2, . . . , Nk+1}
Step 5: Compute p(xk+1|zk) for Ξk+1(Nk+1)

p(ξ
k+1,j

|zk) =

Nk∑
i=1

∆ξ
ki

p(ξ
ki
|zk) pwk

(ξ
k+1,j

− η
k+1,i

)
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Point-mass method: Graphical illustration of basic
algorithm
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Point-mass method: Weaknesses of standard algorithm

the setting of the number of grid points not
specified

incomplete description of grid design
minimum sufficient number of grid points not specified

enormous computational demands, especially for
multimodal pdf’s

multigrid representation
grid splitting
grid merging
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Grid design: Anticipative approach

The task is to set a suitable number Nk+1 of grid points for the grid
Ξk+1(Nk+1)

It will affect the approximation quality of the discrete convolution at
the next time step k + 2.

The idea of the anticipative approach: Design of the grid is based on
its future behaviour respecting characteristics of the system

The number of grid points Nk+1 is determined by

the length of a significant support Ik+1 of p(xk+1|zk)

by the distance ∆ξk+1 of two neighbouring grid points.
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Grid design: Anticipative approach (cont’d)

The convolution integral written for a single point Xk+2

p(Xk+2|zk+1) =

∫
p(xk+1|zk+1) p(Xk+2|xk+1) dxk+1

can be approximated by

p(Xk+2|zk+1) ≈ ∆ξk+1

Nk+1∑
j=1

Pk+1|k+1,j pwk+1
(Xk+2 − ηk+2,j)

where ηk+2,j = fk+1(ξk+1,j), and ∆ξk+1 = ∆ξk+1,j for j = 1, . . . ,Nk+1,

It is necessary to provide enough grid points ηk+2,j ∈ Hk+2(Nk+1) in
the neighbourhood of the point Xk+2 ∈ Ik+2 to ensure a sufficient
approximation quality of the convolution.

The size of the neighbourhood of Xk+2 is determined by the variance
of the state noise wk+1 because Xk+2 can be interpreted as the
mean value of the random variable sk+2 with a pdf defined as
p(sk+2) = pwk+1

(Xk+2 − sk+2).
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Grid design: Anticipative approach (cont’d)

A case where the support of the pdf’s pwk+1
(Xk+2 − sk+2) is covered by

at least three points ηk+2,j ∈ Hk+2(Nk+1)

X
k+2

 η
k+2, j

p
w

k+1

(X
k+2

−s
k+2

)

s
k+2

Figure: The covering of supports of the pdf’s pwk+1(Xk+2 − sk+2) by grid points
ηk+2,j . The point Xk+2 is denoted by the circle and points ηk+2,j are denoted by
×-marks.
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Grid design: Anticipative approach (cont’d)

The “sufficiency” of the number Nk+1 of grid points ηk+2,j may be
expressed by

a > 0 - the length of a non-negligible support of pwk+1

m ∈ {1, 2, 3, . . .} - the covering of the support by grid points

The parameter a determines what probability Pa given by pwk+1
will be

taken for non-negligible

P(−a
√

Qk+1 ≤ wk+1 ≤ a
√

Qk+1) = Pa

The parameter m expresses the requirement that at least m grid points
ηk+2,j cover the significant support of pwk+1

and thus

(Xk+2 − ηk+2,j) ∈
[
−a

√
Qk+1, a

√
Qk+1

]
for any point Xk+2 ∈ Ik+2.

∆ηk+2,j ≤ 2
a

m

√
Qk+1 ; j = 1, 2, . . . ,Nk+1
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Grid design: Anticipative approach (cont’d)

The condition should be modified for ∆ξk+1,j because distances for the
points ηk+2,j ∈ Hk+2(Nk+1) can be set only via the grid points
ξk+1,j ∈ Ξk+1(Nk+1). Using the well-known relation for transformation of
random variables

psk+2|zk+1(ηk+2,j |zk+1) =
Pk+1|k+1,j∣∣Jk+1(ξk+1,j)

∣∣ ; j = 1, 2, . . . , Nk+1

where Jk+1(xk+1) = dfk+1(xk+1)
dxk+1

, yields

∆ηk+2,j =
∣∣Jk+1(ξk+1,j)

∣∣∆ξk+1

where the index j in ∆ξk+1,j can be omitted because this distance is
assumed to be constant.
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Grid design: Anticipative approach (cont’d)

Now

∆ξk+1 ≤ 2
a

m

√
Qk+1

∣∣Jk+1(ξk+1,j)
∣∣−1

; j = 1, 2, . . . ,Nk+1

Since ξk+1,j are not known yet, any point of the significant support Ik+1

of the predictive pdf p(xk+1|zk) must fulfill

∆ξk+1 ≤ 2
a

m

√
Qk+1

[
max

xk+1∈Ik+1

∣∣Jk+1(xk+1)
∣∣]−1

In case of more complicated functions fk+1(xk+1) it is possible to
approximate the maximum numerically as

max
i=1,...,Nk

∣∣Jk+1(ηk+1,i )
∣∣, ηk+1,i ∈ Hk+1(Nk) .

The maximum value of the distance for the new grid ∆ξ∗k+1.
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Grid design: Anticipative approach (cont’d)

The number of grid points should satisfy

Nk+1 ≥
d(Ik+1)

∆ξ∗k+1

=
d(Ik+1)

2γ
Q
− 1

2

k+1 max
xk+1∈Ik+1

∣∣Jk+1(xk+1)
∣∣

with γ = a
m and Ik+1 = [η̂k+1 − bσk+1, η̂k+1 + bσk+1]

Values of the parameters should satisfy the empirical conditions
b ≥ 3, a ≥ 3, m ≥ 3, and γ ≤ 1 to ensure a sufficient quality of the
estimates.

The condition γ ≤ 1 may be used independently of a and m.

In practical implementations of the algorithm, the parameters b and
γ are likely to be set constant for all instants k = 0, 1, 2, . . ..
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Grid design: Anticipative grid design algorithm for
one-dimensional system

1 Compute estimates of the first two moments of the predictive pdf
p(xk+1|zk) as

η̂k+1 = ∆ξk

Nk∑
i=1

ηk+1,i Pk,i

σk+1 = ∆ξk

Nk∑
i=1

η2
k+1,i Pk,i − η̂2

k+1 + Qk

2 For a chosen b set the non-negligible support of p(xk+1|zk) as
Ik+1 = [η̂k+1 − bσk+1, η̂k+1 + bσk+1]. The length of the support is

d(Ik+1) = 2bσk+1 .
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3 For a chosen γ set the number of grid points Nk+1 satisfying

Nk+1 ≥
bσk+1

γ
Q
− 1

2

k+1 max
xk+1∈Ik+1

∣∣Jk+1(xk+1)
∣∣

where Jk+1(xk+1) = dfk+1(xk+1)
dxk+1

. The maximum of |Jk+1(xk+1)| is
computed analytically, if possible, or else approximated by

max
i=1,...,Nk

∣∣Jk+1(ηk+1,i )
∣∣, ηk+1,i ∈ Hk+1(Nk) .

4 Compute the point mass ∆ξk+1 using the chosen Nk+1 as

∆ξk+1 =
d(Ik+1)

Nk+1

5 Place grid points ξk+1,j ∈ Ξk+1(Nk+1) to cover the support Ik+1

ξk+1,j = η̂k+1 + ∆ξk+1

(
j − Nk+1 + 1

2

)
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Multigrid design

Multimodal pdf

representation of state space by one grid is unsuitable

covering areas of state space with negligible probability of state
presence

high computational demands

⇒ introducing multigrid representation

Multigrid point-mass representation of pdf pxk
(xk)

set of grids: {Ξk [µ](Nk [µ]);µ = 1, . . . , Mk}
set of pdf values: {Pk [µ];µ = 1, . . . , Mk}
grid weight: ωk [µ] = ∆ξk [µ]

∑Nk [µ]
i=1 Pki [µ]
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Multigrid design (cont’d)

Multigrid representation requires modification of the basic algorithm and
new algorithm steps

each grid is handled separately

— repeated application of the basic algorithm

each grid is evaluated by the grid weight ωk [µ]

grid management: splitting and merging
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Multigrid design: Grid splitting using marginal pdf’s
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Multigrid design: Grid merging using Mahalanobis distance

grids are merged after the time update step
(prediction causes increase of uncertainty, transformation of grids
may cause their overlapping)

Mahalanobis distance decision rule: Grids are merged if one of the
M-distances between grid centers is less than δ.

[(m1 −m2)
TC−1

1 (m1 −m2)]
1
2 < δ

[(m2 −m1)
TC−1

2 (m2 −m1)]
1
2 < δ

m
1

m
2
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Numerical illustration

Consider nonlinear system with Gaussian noises

x
(1)
k+1 =x

(1)
k x

(2)
k + w

(1)
k

x
(2)
k+1 =x

(1)
k + w

(2)
k

zk =0.2
(
x

(2)
k

)2
+ vk

p(wk) = N
{

wk ;

[
0
0

]
,

[
0.25 0
0 10−4

]}
,

p(vk) = N{vk ; 0, 1},

p(x0) = N
{

x0;

[
0.1
0.99

]
,

[
16 0
0 0.001

]}

p(xk |zk) =?
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Numerical illustration: Simulation results

x0

prediction filtering
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Numerical illustration: Approximation quality and
computational demands

Algorithm CPU Time Avg. Vk Avg. Nk
(sec)

Basic 1235 0.0895 4141
Anticipative 182 0.0073 1964
Boundary-Based 210 0.0068 1675
Thrifty Convolution 59 0.0068 1675
Multigrid Design 72 0.0068 702
Particle Filter #1 1 0.7039 500
Particle Filter #2 35 0.4386 4000
Particle Filter #3 6830 0.1105 50000

Vk = 1−
∫

min
{
p̂(xk |zk), p(xk |zk)

}
dxk
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Conclusion

Advanced point-mass method was presented
Basic point-mass method

Anticipative approach

Multigrid design

Splitting and merging
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